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Outline

• Part III: Present challenges
– tailorable nonlinear response
– surface vs. bulk origin of metal nonlinearity
– towards metamaterials with optimized nonlinear response
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Second-order response

• Symmetry rule
– noncentrosymmetric structures needed

• Normal incidence
– avoid coupling with traditional

surface nonlinearity
– sample must appear noncentrosymmetric

• Basic shapes
– L-shaped nanoparticles
– T-shaped nanodimers with a nanogap

• Typical sample dimensions
– period 400-500 nm
– gold thickness 20 nm
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Phenomenological model

• Full tensor analysis
[Opt. Express 16, 17196 (2008)]

– ”forbidden” signals dominate and have strong
multipole part

– chiral symmetry breaking

• Role of surface defects
– non-equivalent defects at symmetrically

opposite sites
– local dipolar sources retarded along the 

direction of observation
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New samples

• Significantly improved quality
[Opt. Express 18, 16601(2010)]

– narrow extinction peaks
– high-order resonances observed
– stronger SHG signals

• Four equivalent signals
– all lineshapes overlap
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Metamolecular nonlinear optics

• Molecular nonlinear optics

• Metamolecule
– L shape
– effective dipolar SHG response
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Reference sample

• Plasmon resonances
– x-polarized at 1500 nm
– y-polarized at 1000 nm

• SHG measurement
– rotate linear fundamental

polarization
– detect polarization components

of SHG field
– symmetry rules fulfilled
– strong enhancement for y-

polarized resonance of 
fundamental light

Nanophotonics Summer School, Erice 20.7.2012 7

x

500 nm

y



TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Physics

SHG from modified samples

• Orientational average over particles
– prediction for modified samples
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Diffractive coupling

• Air modes

• Substrate modes
– need not propagate in air

• Plasmonic structures
– interplay between particle

plasmons and diffraction
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Spectra of modified samples

• Unit cell depends on ordering [Opt. Lett. 36, 2375 (2011)]

– interplay between particle plasmons and diffraction

Nanophotonics Summer School, Erice 20.7.2012 10

1000 nm

u

v

10
00

 n
m

x y

1000 nm

u

v

10
00

 n
m

50
0 

nm

u

v

1000 nm



TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Physics

”Metamaterials”

• Effective medium
– structural features much smaller

than wavelength
– transformation optics
– negative index of refraction
– electromagnetic cloaking

• Functional nanostructures
– optimized for the desired function
– electromagnetic surface modes
– diffraction anomalies
– resonance-domain effects
– also purely dielectric structures
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Passive elements
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Origin of SHG

• Local-field distribution
– hot spots near the boundary of the dimer

• Surface nonlinearity
– dominated by local component
– integrate response around dimer perimeter

• Gap region
– formally noncentrosymmetric
– responses from top and                                                        

bottom tend to cancel nn X

Y

nnn

nnn

n

nnn
nnn

n

nnn

parts with opposite 
normal tend to cancel

asymmetric field 
distribution required

[Nano Lett. 7, 1251 (2007)]
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SHG from metal nanoparticles

• Metamaterials [Wegener et al., Science 
313, 502 (2006); Opt. Lett. 33, 1975 (2008)]

– Lorentz force

– convective force

• Our interpretation
– T samples
– role of surface defects

• Free-electron theories
– bulk parameter vanishes

Nanophotonics Summer School, Erice 20.7.2012 14

surface nonlinearity

bulk nonlinearity

' 0 

~ F v B
( ) F v v



TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Physics

Surface and bulk contributions

• Surface
– electric-dipole and higher-multipole response
– behaves as effective electric-dipole response

• Bulk
– magnetic and quadrupole response
– effective polarization
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Isotropic material

• Effective bulk polarization

• Surface
– effective electric-dipole tensor

– isotropic surface symmetry
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Experiment: Two-beam SHG

• Fundamental beams
– 70 ps, 1064 nm, 1 kHz  Nd:YAG

• Control beam
– polarization fixed

• Probe beam
– polarization varied by QWP

• SHG signal
– reflected

• Sample
– 150 nm thick gold film
– glass substrate
– linear properties determined by ellipsometry
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Polarization signatures

• s-polarized signals
– unique signatures
– not sensitive to linear optics

• Isotropic bulk

• Isotropic surface
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Results

• s-polarized SHG signal
– can only be fitted by surface-

bulk interference

• Theoretical explanation
– add momentum damping to the 

hydrodynamic model

• Polarization measurements
– different combinations of control 

and SHG polarizations
– simultaneous fit of all data
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Results for gold film

• Nonlinear tensor components [PRB 80, 233402 (2009)]

nonlinear
parameter

relative
magnitude

relative
contribution
to dominant

signal

relative
contribution
to another

signal

surface
surface
surface

bulk

zzz+
zxx)+
xxz
’

250
1

3.6
2.7

1.3
1.5
3.5

0.004

-
-

2.2
0.2

based on internal fields

surface effects should
not be neglected!!!

z



TAMPERE UNIVERSITY OF TECHNOLOGY
Department of Physics

Thick and thin films

• Thick film
– 150 nm nominal thickness
– isolated terraces removed
– rms roughness 1.1 nm
– peak-to-peak roughness 8.9 nm

• Thin film
– 20 nm nominal thickness
– rms roughness 1.5 nm
– peak-to-peak roughness 11.3 nm
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SHG measurements

• s-polarized signals

• Surface-bulk interference
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Phenomenology

• Nanoscale feature
– idealized to a sphere

• SHG geometry
– two fundamental beams
– coherent signal

• Symmetry arguments
– different polarizations of the 

fundamental beams
– only s-polarized second-harmonic 

signals allowed
– behaves as the bulk-type response
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Surface vs. bulk

• Thin films
– surface effects dominate
– roughness enhances bulk-type response

• Nanoantennas [Benedetti, OpEx 19, 26752 (2011)]

– relative importance of surface and bulk terms depends
on experimental geometry

• Nanostructures [Ciraci, PRB 85, 201403 (2012)]

– electric mechanism dominates
over magnetic

• Surface contributions
– broken surface symmetry
– bulk terms and surface gradients
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Local-field factors

• Traditional materials
– Lorentz local-field factor

• Effective susceptibility
– local-field factors at all frequencies
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Plasmonic local-field factors

• Metal structures
– tensorial local field factor

• Effective nonlinearity
– resonant local-field factors
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Improvements in SHG efficiency

• Sample quality
– homogeneous broadening
– narrow linewidth
– dipole limit

• Diffractive coupling
– particle ordering
– sharp resonances

• Passive elements
– modification of local modes
– not optimized yet at all
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Towards optimized response

• Resonance enhancement [Niesler, OL  36, 1533 (2011)]

– fundamental wavelength resonance favorable
– SHG resonance, high-order resonances?

• Local-field distribution [Nano Lett. 7, 1251 (2007)]

– polarization and asymmetry
– surface vs. bulk origin, mode overlap?

• Coupling
– spectral broadening and narrowing
– near-field coupling, photonic coupling?

• Multipole effects
– unidirectional SHG?
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